The nuclear trace of periodic vector?valued pseudo?differential operators with applications to index theory

نویسندگان

چکیده

In this paper we investigate the nuclear trace of vector-valued Fourier multipliers on torus and its applications to index theory periodic pseudo-differential operators. First characterise nuclearity operators acting Bochner integrable functions. regards, consider discrete cases. We go address problem finding sharp sufficient conditions for torus. end our investigation with two formulae. First, express a multiplier in terms operator-valued symbol then use formula expressing certain elliptic belonging Hörmander classes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Transformation of Almost Periodic Pseudodifferential Operators to Fourier Multiplier Operators with Operator-valued Symbols

We present results for pseudodifferential operators on Rd whose symbol a(·,ξ) is almost periodic (a.p.) for each ξ ∈ Rd and belongs to a Hörmander class Sm ρ,δ. We study a linear transformation a 7→ U(a) from a symbol a(x,ξ) to a frequency-dependent matrix U(a)(ξ)λ,λ′ , indexed by (λ,λ′) ∈ Λ×Λ where Λ is a countable set in Rd . The map a 7→ U(a) transforms symbols of a.p. pseudodifferential ope...

متن کامل

Index and Homology of Pseudodifferential Operators on Manifolds with Boundary

We prove a local index formula for cusp-pseudodifferential operators on a manifold with boundary. This is known to be equivalent to an index formula for manifolds with cylindrical ends, and hence we obtain a new proof of the classical Atiyah-Patodi-Singer index theorem for Dirac operators on manifolds with boundary, as well as an extension of Melrose’s b-index theorem. Our approach is based on ...

متن کامل

Families Index for Pseudodifferential Operators on Manifolds with Boundary

An analytic families index is defined for (cusp) pseudodifferential operators on a fibration with fibres which are compact manifolds with boundaries. This provides an extension to the boundary case of the setting of the (pseudodifferential) Atiyah-Singer theorem and to the pseudodifferential case of the families Atiyah-Patodi-Singer index theorem for Dirac operators due to Bismut and Cheeger an...

متن کامل

Symplectic inverse spectral theory for pseudodifferential operators

We prove, under some generic assumptions, that the semiclassical spectrum modulo O(~) of a one dimensional pseudodifferential operator completely determines the symplectic geometry of the underlying classical system. In particular, the spectrum determines the hamiltonian dynamics of the principal symbol.

متن کامل

Pseudodifferential Operators

The study of pseudodifferential operators emerged in the 1960’s, having its origins in the study of singular integro-differential operators. In fact, Friedrichs and Lax coined the term “pseudodifferential operator” in their 1965 paper entitled “Boundary Value Problems for First Order Operators”. Since that time, pseudodifferential operators have proved useful in many arenas of modern analysis a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematische Nachrichten

سال: 2021

ISSN: ['1522-2616', '0025-584X']

DOI: https://doi.org/10.1002/mana.201900040